With the release of the 2015 Program for International Student Assessment (PISA) on the horizon, the Organization for Economic Cooperation and Development (OECD) Education Office has stoked-up the “Math Wars” with a new study. While the October 2016 report examines a number of key questions related to teaching Mathematics, OECD Education chose to highlight its findings on “memorization,” presumably to dispel perceptions about “classroom drill” and its use in various countries.
The OECD, which administers the PISA assessments every three years to 15-year-olds from around the globe, periodically publishes reports looking at slices of the data. It’s most October 2016 report, Ten Questions for Mathematics Teachers and How PISA Can Help Answer Them, based upon the most recent 2012 results, tends to zero-in on “memorization” and attempts to show that high-performing territories, like Shanghai-China, Korea, and Chinese-Taipei, rely less on memory work than lower-performing places like Ireland, the UK, and Australia.
American Mathematics educator Jo Boaler, renowned for “Creative Math,” jumped upon the PISA Study to buttress her case against “memorization” in elementary classrooms. In a highly contentious November 2016 Scientific American article, Boaler and co-author Pablo Zoido, contended that PISA findings confirmed that “memorizers turned out to be the lowest achievers, and countries with high numbers of them—the U.S. was in the top third—also had the highest proportion of teens doing poorly on the PISA math assessment.” Students who relied on memorization, they further argued, were “approximately half a year behind students who used relational and self-monitoring strategies” such as those in Japan and France.
Australian education researcher Greg Ashman took a closer look at the PISA Study and called into question such hasty interpretations of the findings. Figure 1.2: How teachers teach and students learn caught his eye and he went to work interrogating the survey responses on “memorization” and the axes used to present the data. The PISA analysis, he discovered, also did not include an assessment of how teaching methods might be correlated with PISA scores in Mathematics. Manitoba Mathematics professor Robert Craigen spotted a giant hole in the PISA analysis and noted that the “memorization” data related to “at-home strategies of students” not their instructional experiences and may wel;l indicate that students who are improperly instructed in class resort to memorization on their own.
What would it look like, Ashman wondered, if the PISA report had plotted how students performed in relation to the preferred methods used on the continuum from “more student-oriented instruction” to “more teacher-directed instruction.” Breaking down all the data, he generated a new graph that actually showed how teaching method correlated with higher math performance and found a “positive correlation” between teacher-directed instruction and higher Math scores. “Correlations,” he duly noted, “do not necessarily imply causal relationships but clearly a higher ratio of teacher-directed activity to student orientation.”
Jumping on the latest research to seek justification for her own “meta-beliefs” are normal practice for Boaler and her “Discovery Math” education disciples. After junking, once again, the ‘strawmen’ of traditional Mathematics — “rote memorization” and “drill,” Boaler and Zoido wax philosophical and poetic: “If American classrooms begin to present the subject as one of open, visual, creative inquiry, accompanied by growth-mindset messages, more students will engage with math’s real beauty. PISA scores would rise, and, more important, our society could better tap the unlimited mathematical potential of our children.” That’s definitely stretching the evidence far beyond the breaking point.
The “Math Wars” do generate what University of Virginia psychologist Daniel T. Willingham has aptly described as “a fair amount of caricature.” The recent Boaler-Zoido Scientific American article is a prime example of that tendency. Most serious scholars of cognition tend to support the common ground position that learning mathematics requires three distinct types of knowledge: factual, procedural and conceptual. “Factual knowledge,” Willingham points out, “includes having already in memory the answers to a small set of problems of addition, subtraction, multiplication, and division.” While some students can learn Mathematics through invented strategies, it cannot be relied upon for all children. On the other hand, knowledge of procedures is no guarantee of conceptual understanding, particularly when it comes to complexites such as dividing fractions. It’s clear to most sensible observers that knowing math facts, procedures and concepts is what counts when it comes to mastering mathematics.
Simply ignoring research that contradicts your ‘meta-beliefs’ is common on the Math Education battlefield. Recent academic research on “memorization” that contradicts Boaler and her entourage, is simply ignored, even that emanating from her own university. Two years ago, Shaozheng Qin and Vinod Menon of Stanford University Medical School led a team that provided scientifically-validated evidence that “rote memorization” plays a critical role in building capacity to solve complex calculations.
Based upon a clinical study of 68 children, aged 7 to 9, studied over the course of one year, their 2014 Nature Neuroscience study, Qin, Menon et al. found that memorizing the answers to simple math problems, such as basic addition or multiplication, forms a key step in a child’s cognitive development, helping bridge the gap between counting on fingers and tackling more complex calculations. Memorizing the basics, they concluded, is the gateway to activating the “hippocampus,” a key brain structure for memory, which gradually expands in “overlapping waves” to accommodate the greater demands of more complex math.
The whole debate over memorization is suspect because of the imprecision in the use of the term. Practice, drilling, and memorization are not the same, even though they get conflated in Jo Boaler’s work and in much of the current Mathematics Education literature. Back in July 2012, D.T. Willingham made this crucial point and provided some valuable points of distinction. “Practice,” as defined by Anders Ericsson, involves performing tasks and feedback on that performance, executed for the purpose of improvement. “Drilling’ connotes repetition for the purpose of achieving automaticity, which – at its worst, amounts to mindless repetition or parroting. “Memorization,” on the other hand, relates to the goal of something ending up in long-term memory with ready access, but does not imply using any particular method to achieve that goal.
Memorization has become a dirty word in teaching and learning laden with so much baggage to the point where it conjures up mental pictures of “drill and kill” in the classroom. The 2016 PISA Study appears to perpetuate such stereotyping and, worst of all, completely misses the “positive correlation” between teacher-directed or explicit instruction and better performance in mathematics.
Why does the PISA Study tend to associate memorization in home-study settings with the drudgery of drill in the classroom? To what extent does the PISA Study on Mathematics Teaching support the claims made by Jo Boaler and her ‘Discovery Math’ advocates? When it comes to assessing the most effective teaching methods, why did the PISA researchers essentially take a pass?